New Alix board for 2013
-
FYI I've just finished doing iperf testing on an older alix 2d2.
Sadly I did not take power usage measurements while testing.Full results at: http://forum.pfsense.org/index.php/topic,70911.0.html
Short version, okay for up to 50 Mbit, can do up to 95 Mbit but you're wringing the nuts off there.
-
How are you testing that? A throughput test is what's needed, iperf running on two separate machine not on the pfSense box.
326Mbps seems disappointingly slow. :-\Steve
We ran a throughput test on a very similar box (same cpu, same NICs), and were disappointed.
Our APU only recently arrived.
-
First impressions (running IPFire):
http://www.tuxone.ch/2013/12/alix-nachfolger-im-test.html
-
i heard this new alix apu gets pretty hot, almost 81.5 degrees
-
Since it relies on the enclosure for cooling, what case was that in?
Steve
-
in the default case it heats up that much, atleast thats what the developer told me himself and that it might be fixed in the next redesign so consider that temperature it would make it useless in hot countries like mine where the summer goes upto 50 degrees
-
Hmm, seems very close to the 90 degrees maximum rating.
Steve
-
That seems really high for a heatsinked low-TDP processor like this. How is it transferring heat to the case exactly, e.g. a really thick thermal pad?
-
in the default case it heats up that much, atleast thats what the developer told me himself and that it might be fixed in the next redesign so consider that temperature it would make it useless in hot countries like mine where the summer goes upto 50 degrees
You can find below a new enclosure designed for PC Engines APU by Calexium.
The thermal dissipation is better than closed small cases from PC Engines. There is also HDD fixation for up to 2 HDD.
http://store.calexium.com/en/boitiers/324-pc-engines-alix-2d3-2d13-or-openvox-ipc100-110-120-case-with-hdd-wifi-black.html -
the other thing is that the processor is on the bottom so most of the heat is towards a wall or the ground based on where its placed so in countries like mine thats another issue as the summer temps here r 50 degrees so the ground is much warmer than the rest of the house. it would be better if there was a fan, even low speed would be better than nothing and the processor on top rather than bottom
-
I'm sure that extensive testing has been done by pc-engines during development. I don't believe for a second that they didn't think about keeping the CPU cool enough. Have we actually seen any heat related failure? Shutdowns? Reduced speed?
That's using cases that are just sheet aluminium. If even a small amount of finning were added I'm sure it could run cooler for use in a high temperature environment.
Aluminium is amazingly good at conducting heat so the fact that the CPU is in contact with the bottom may not make all that much difference.Steve
-
Those temps just seem off to me - were the die directly contacting the aluminium case I wouldn't expect it to get nearly that hot. Does anyone know how the production platform is mounted? Those temps suggest the die could be floating i.e. only conduction through PCB, or a thick thermal pad which don't have great conductivity.
The new board uses barely more power than the 2D13, and that barely gets lukewarm to the touch; my GigE switch gets warmer. Even the Geode CPU itself without heatsinking only gets warm to the touch, although we're talking about different packages of course.
-
That seems really high for a heatsinked low-TDP processor like this. How is it transferring heat to the case exactly, e.g. a really thick thermal pad?
PC Engines web site states "using a 3 mm alu heat spreader". Without having seen pre-production units, I understand this as using the 3mm spreader to bridge the gap between the CPU die and the enclosure. This seems supported by the visible thermal grease residue on CPU and south bridge die in the pictures.
These high temperatures do not at all seem implausible, let alone surprising, to me. As a reference point, I am aware of this test. Featuring the AMD G-T40E (which is the lower-TDP version of the two which were considered for the the PC Engines APU), the Jetway test unit approached 80° C under CPU load. And this in, at least judging from a quick glance, an enclosure that seems to have been specifically designed for thermal dissipation (unlike the Alix enclosures). In contrast, the cooling solution from PC Engines looks like an attempt to shoehorn the new APU thermals into cases that were not designed for passive conductive cooling to begin with.
That's not to say they can't do it successfully and won't be able to deliver a solid & stable (in the long term) solution - but employing the T-40_N_ in a fanless build using the existing Alix enclosures always seemed quite a stretch to me.
-
The Jetway board itself is using more power than the ALIX is stated to though, which means extra heat to expel.
My reasoning is, the new board uses only a couple of Watts more than the existing one, at least when idle, so it seems unlikely the case would go from barely lukewarm to too hot to touch. Hence my theory of something being less-than-ideal with the thermal path from die to enclosure.
Has anyone with the new board observed the enclosure getting hot? Bear in mind that since the heat still needs to get through the enclosure to the air I'd expect similar enclosure temperatures whether the CPU was well bonded to the enclosure or not, but if there's a large temperature delta between the die and enclosure (e.g. CPU is 80+ but case is merely warm), then things could improve with a better thermal path between the two.
-
How are you measuring the temperature? Are you sure it's accurate? Even close?
Steve
-
where can we get one and what is the price?
-
@gonzopancho:
The plan for pfSense 2.2 was announce prior to your post.
I wasn't involved with pfSense prior to September 2012 in any way other than the largest vendor and largest supporter of the project.
Since September 2012, I am a co-owner of the company behind pfSense (first BSDP, then ESF), as such, I have more ability to effect change.Since I am, by avocation and training, a software engineer (and before I quit all the dot-com BS and moved to Hawaii in 2004, someone who managed large software and hardware projects), I agree that the release process for pfSense has not been as crisp as it could be.
The extreme delays in getting pfSense 2.1 out the door were due to two primary factors:
-
an abortive attempt at basing 2.1 on FreeBSD 9.0. Most people in the FreeBSD community agree that 9.0 was "not good". When this happened, the decision was taken to base 2.1 on FreeBSD 8.3. This resulted in the partial loss of 6-8 months of work.
-
Adding support for IPv6 required extensive changes and testing. This takes time.
Also, during that time, the original partnership fractured, new owners came on-board, Chris moved from Kentucky to Austin, and several other things which are not appropriate for posting in a public forum were handled. These all slowed work to some degree.
–-
On the subject of 802.11ac, I'll just point out that it is still pre-standard. The 802.11ac standard is expected to clear final 802.11 Working Group approval and publication scheduled in early 2014. See: http://grouper.ieee.org/groups/802/11/Reports/802.11_Timelines.htm
When you say things like 802.11n’s delay in ratification was a merely political hold-up, with little significance for real-world product availability, you appear to not understand the standards process. There was no 802.11n standard prior to its approval and publication in 2007. If you had been in the 802.11 world as long as I have, you would understand that there can be severe financial consequences for claiming something as "802.11n" or "802.11ac" prior to the process completing. Yes, vendors have taken to shipping products marked with "draft" appended to the standards compliance claim. I can't help what greedy people do.
If you really want 802.11ac in FreeBSD, I'm sure I can find someone to make it happen faster for payment.
If FreeBSD continues to be SLOW in terms of updates and rough around the edges for development purposes, why not do what IPcop did and move to a Linux kernel. Driver support and production ready releases are much quicker and better.
-
-
Switching from *BSD to Linux kernel is not exactly straight forward!
IPCop didn't move to a Linux kernel it was forked from Smoothwall which was always Linux based.
FreeNAS moved to a debian base but it ended up as a complete re-write and split the project.
http://en.wikipedia.org/wiki/FreeNAS#HistorySteve
-
Just a quick question out of curiosity: Is FreeBSD in general a better choice for a firewall/router application? I mean does it provide faster response compared to Linux kernel?
Thanks,
-
Of course faster isn't necessarily better. ;)
Anecdotally Linux is faster but that does depend on many factors, NICs, system size etc. Currently pfSense (any BSD firewall using PF) is limited to a single cpu core for traffic filtering/forwarding. That should change with the new SMP PF that's coming with FreeBSD 10. I don't beleive Linux has that restriction in IP Tables.
There are other reasons that pfSense is built on FreeBSD:
https://doc.pfsense.org/index.php/Why_did_you_choose_FreeBSD_instead_of_%27insert_OS_here%27%3FSteve