Playing with fq_codel in 2.4



  • @markn6262 Gotcha, yeah, I was replying to your response to me. The config I posted should work and the change you specified in your response should not be required.

    @markn6262 said in Playing with fq_codel in 2.4:

    @uptownvagrant said in Playing with fq_codel in 2.4:

    ICMP subtypes: Traceroute

    I find Win tracert does not work with your config. Ping does, however. I changed your two workaround rules to one ICMP any in/out & tracert then works.



  • @gsmornot you are very fortunate. :) I'm curious, what amount of bufferbloat were you seeing before implementing shapers?



  • @uptownvagrant said in Playing with fq_codel in 2.4:

    @gsmornot you are very fortunate. :) I'm curious, what amount of bufferbloat were you seeing before implementing shapers?

    I am not as technical with this as you guys have been but will say DSLReports gives me a D on average without the config I shared. The grade is all due to upload. Download has never been an issue here.

    I have tried the config like you posted. On average it gives me a C with an occasional B. My guess is power in the 3100 but just a guess. Keeping it simple just works best for this hardware. I will say with a config like your on my older desktop I pull out time to time I would get As. But it has much more power and needs more power which is my reason for the 3100.



  • @uptownvagrant said in Playing with fq_codel in 2.4:

    1.) Create "Out" limiter

    Tick "Enable"
    Name: FQ_CODEL_OUT
    Bandwidth: 90 Mbit/s
    Mask: None
    Queue Management Algorithm: Tail Drop
    Scheduler: FQ_CODEL

    target: 5
    interval: 100
    quantum: 1514
    limit: 10240
    flows: 1024

    Click Save/Apply Changes

    2.) Add "Out" queue

    Tick "Enable"
    Name: fq_codel_out_q
    Mask: None
    Queue Management Algorithm: Tail Drop
    Click Save/Apply Changes

    3.) Create "In" limiter

    Tick "Enable"
    Name: FQ_CODEL_IN
    Bandwidth: 90 Mbit/s
    Mask: None
    Queue Management Algorithm: Tail Drop
    Scheduler: FQ_CODEL

    target: 5
    interval: 100
    quantum: 1514
    limit: 10240
    flows: 1024

    Click Save/Apply Changes

    4.) Add "In" queue

    Tick "Enable"
    Name: fq_codel_in_q
    Mask: None
    Queue Management Algorithm: Tail Drop
    Click Save/Apply Changes

    I am attempting to duplicate your configuration, but wanted to confirm which limiter is upload and which is download so that I can set my bandwidths properly. I'm guessing that "In" is upload and "Out" is download?



  • It depends on the perspective. I normally put myself in place of the device.

    So If I apply on WAN interface, "IN" is download and "OUT" is upload. So for the first floating rule matching incomming in You do regular IN/OUT, but for the second rule which matches outgoing traffic You reverse the queues.

    Still, the configuration of @uptownVagrant confuses me. I can confirm however that under load ping and traceroutes are not dropped.



  • @xciter327 said in Playing with fq_codel in 2.4:

    It depends on the perspective.

    Yes, I agree. By my perspective, traffic entering (IN) the WAN port would be leaving my local network (upload). Traffic exiting (OUT) the WAN port would be entering my local network (download). IIRC this was the same perspective used by Netgate in their recent hangout regarding fq_codel. It's all a little confusing, that's why I wanted to confirm with @uptownVagrant .



  • @wgstarks I've updated the post to better explain IN and OUT. From the perspective of WAN, IN is traffic coming into the interface from the Internet, aka download, and OUT is traffic leaving the interface and bound for the Internet, aka upload. Hope that clears things up.



  • @uptownvagrant
    Thanks for clarifying.

    Also (minor issue), in rules creation step 3 I couldn’t select “Default” for gateway. Had to actually pick a gateway as you did in step 4.



  • @wgstarks Make sure you are choosing "Direction: In" on that rule. IN rules do not require a gateway be selected.



  • @uptownvagrant
    Worked. Thanks again.



  • For those interested, here is a quick comparison I ran today of ALTQ shapers using FAIRQ + CoDel and DummyNet limiters using FQ-CoDel. I set both ALTQ shapers and the limiters to 94 Mbit/s.

    0_1543553108516_lab.jpg

    0_1543552097254_FairQ+CoDel_vs_FQ-CoDel.jpg

    0_1543552183964_rrul-2018-11-29T175857.808604.rrul_C2758_pfSense2_4_4_100Mb_FairQ_CoDel_netperf2.flent.gz
    0_1543552199424_rrul-2018-11-28T183120.881107.rrul_C2758_pfSense2_4_4_100Mb_FQ-CoDel_netperf2.flent.gz



  • @uptownvagrant Thanks!

    fq_codel is definitely better, especially for upload bandwidth, but fairq+codel is not that bad for how easy it is to setup.



  • This post is deleted!


  • @ricardox

    Substitua CoDel por TailDrop. Não use o CoDel AQM com FQ-CoDel.

    My apologies if the English to Portuguese translation is incorrect. Replace CoDel with TailDrop. Don't use CoDel AQM with FQ-CoDel.



  • This post is deleted!


  • @harvy66 Okay, thank you so much, it worked.



  • This config work perfect! for 1 wan
    I have 2 adsl, with balance group (tier 1 both wans).
    But dont know how to config the floating rules to use this balance group.
    The wans have different speeds.

    Thanks!



  • I do not speak English, but google speaks for me KKK, create 2 floating rules one for each gateway this way :0_1544128601650_Rules.png



  • @ricardox Thanks, I'm going to try it
    This is what I have
    WAN1 and WAN2

    Create 8 floating rules (following the example of @uptownVagrant )
    but I think that is not the correct way to achieve the desired goal

    1.)
    Action: Pass
    Quick: Tick Apply the action immediately on match.
    Interface: WAN1
    Direction: out
    Address Family: IPv4
    Protocol: ICMP
    ICMP subtypes: Traceroute
    Source: any
    Destination: any

    Action: Pass
    Quick: Tick Apply the action immediately on match.
    Interface: WAN2
    Direction: out
    Address Family: IPv4
    Protocol: ICMP
    ICMP subtypes: Traceroute
    Source: any
    Destination: any

    3.)
    Action: Pass
    Quick: Tick Apply the action immediately on match.
    Interface: WAN1
    Direction: any
    Address Family: IPv4
    Protocol: ICMP
    ICMP subtypes: Echo reply, Echo Request
    Source: any
    Destination: any
    Description: limiter drop echo-reply under load workaround

    4.)
    Action: Pass
    Quick: Tick Apply the action immediately on match.
    Interface: WAN2
    Direction: any
    Address Family: IPv4
    Protocol: ICMP
    ICMP subtypes: Echo reply, Echo Request
    Source: any
    Destination: any
    Description: limiter drop echo-reply under load workaround

    5.)
    Action: Match
    Interface: WAN1
    Direction: in
    Address Family: IPv4
    Protocol: Any
    Source: any
    Destination: any
    Gateway: WAN1
    In / Out pipe: fq_codel_WAN1_in_q / fq_codel_WAN1_out_q

    6.)
    Action: Match
    Interface: WAN2
    Direction: in
    Address Family: IPv4
    Protocol: Any
    Source: any
    Destination: any
    Gateway: WAN2
    In / Out pipe: fq_codel_WAN2_in_q / fq_codel_WAN2_out_q

    7.)
    Action: Match
    Interface: WAN1
    Direction: out
    Address Family: IPv4
    Protocol: Any
    Source: any
    Destination: any
    Gateway: WAN1
    In / Out pipe: fq_codel_WAN1_out_q / fq_codel_WAN1_in_q

    8.)
    Action: Match
    Interface: WAN2
    Direction: out
    Address Family: IPv4
    Protocol: Any
    Source: any
    Destination: any
    Gateway: WAN2
    In / Out pipe: fq_codel_WAN2_out_q / fq_codel_WAN2_in_q



  • @mr-cairo 0_1544132824688_1.png 0_1544132834067_2.png 0_1544132845423_3.png

    Do the same for Upload



  • So an update from myself.

    Still trying to perfect the interactive packets been dropped issue, I noticed pie is now implemented on the AQM.

    So what I have done for now to test on my own network is changed droptail to pie for the pipe and queue, scheduler is still using fq_codel.

    Also in regards to the dynamic flow sets, it seems something isnt quite right, as the OP pointed out, there is just one single flow created and always shows src and target ip as 0.0.0.0 so regardless of what mask is configured there will always only be one flow and I suspect if multiple flows can be made to work results will be better. The reason been if you have say two flows, one is a full speed saturated download over fast ftp and the other is from an interactive ssh session, the latter will never fill its flow queue and wont drop packets, while the first would fill and drop packets, as it is now both tcp streams share the same flow, so how does the shaper know which packets to drop? the only help on that seems to come from the quantum value which prevents smaller packets from been put at the end of the queue.

    --update--

    Ok I have managed to get the multiple flows working. Was a lot of experimentation but I got there after finally understanding what the man page for ipfw/dummynet is explaining. If you get it wrong dummynet stops passing traffic ;) but I am only testing on my home network so is fine.

    --update2--

    I chose to have a flow per internet ip rather than per lan device. Also this is only for ipv4 right now, I think if you configure it so it overloads the flow limit then it breaks, and obviously the ipv6 address space is way bigger.

    root@PFSENSE home # ipfw sched show
    00001:  69.246 Mbit/s    0 ms burst 0 
    q00001 500 sl. 0 flows (256 buckets) sched 1 weight 0 lmax 0 pri 0 droptail
        mask:  0x00 0x000000ff/0x0000 -> 0x00000000/0x0000
     sched 1 type FQ_CODEL flags 0x1 256 buckets 4 active
     FQ_CODEL target 5ms interval 30ms quantum 300 limit 1000 flows 1024 ECN
        mask:  0x00 0xffffff00/0x0000 -> 0x00000000/0x0000
       Children flowsets: 1 
    BKT ___Prot___ _flow-id_ ______________Source IPv6/port_______________ _______________Dest. IPv6/port_______________ Tot_pkt/bytes Pkt/Byte Drp
      0        ip       0                                       ::/0                                           ::/0        6      288  0    0   0
     17 ip        46.17.x.x/0             0.0.0.0/0        4      176  0    0   0
    123 ip      208.123.x.x/0             0.0.0.0/0        5      698  0    0   0
    249 ip       80.249.x.x/0             0.0.0.0/0        6      168  0    0   0
    00002:  18.779 Mbit/s    0 ms burst 0 
    q00002 500 sl. 0 flows (256 buckets) sched 2 weight 0 lmax 0 pri 0 droptail
        mask:  0x00 0xffffffff/0x0000 -> 0x00000000/0x0000
     sched 2 type FQ_CODEL flags 0x0 0 buckets 0 active
     FQ_CODEL target 5ms interval 300ms quantum 300 limit 800 flows 1024 NoECN
       Children flowsets: 2 
    

    --update 3--

    Initial tests this is working sweet, on the below paste you can clearly see the bulk download flow and notice it only drops packets from that flow. I also tested on steam and zero dropped packets now on flows outside of steam, wow.

    BKT ___Prot___ _flow-id_ ______________Source IPv6/port_______________ _______________Dest. IPv6/port_______________ Tot_pkt/bytes Pkt/Byte Drp
      0        ip       0                                       ::/0                                           ::/0        7      348  0    0   0
     17 ip        46.17.x.x/0             0.0.0.0/0        3      132  0    0   0
     58 ip      216.58.x.x/0             0.0.0.0/0        1       52  0    0   0
    123 ip      208.123.x.x/0             0.0.0.0/0        5      698  0    0   0
    135 ip       5.135.x.x/0             0.0.0.0/0     11919 17878500  3 4500   2
    249 ip       80.249.x.x/0             0.0.0.0/0        6      168  0    0   0
    254 ip     162.254.x.x/0             0.0.0.0/0        1       40  0    0   0
    


  • @chrcoluk said in Playing with fq_codel in 2.4:

    So an update from myself.

    Still trying to perfect the interactive packets been dropped issue, I noticed pie is now implemented on the AQM.

    What interactive packets being dropped issue? Can you be specific? How are you measuring drops?

    So what I have done for now to test on my own network is changed droptail to pie for the pipe and queue, scheduler is still using fq_codel.

    When FQ-CoDel is used as the scheduler, the AQM you choose is not utilized. (fq_codel has separate enqueue/dequeue functions - AQM is ignored) https://forum.netgate.com/post/804118

    Also in regards to the dynamic flow sets, it seems something isnt quite right, as the OP pointed out, there is just one single flow created and always shows src and target ip as 0.0.0.0 so regardless of what mask is configured there will always only be one flow and I suspect if multiple flows can be made to work results will be better. The reason been if you have say two flows, one is a full speed saturated download over fast ftp and the other is from an interactive ssh session, the latter will never fill its flow queue and wont drop packets, while the first would fill and drop packets, as it is now both tcp streams share the same flow, so how does the shaper know which packets to drop? the only help on that seems to come from the quantum value which prevents smaller packets from been put at the end of the queue.

    What you are seeing using 'ipfw sched show' is not exposing the dynamic internal flows and sub-queues that FQ-CoDel is managing. It seems you are trying to create a visual representation, via 'ipfw sched show', of the mechanism that is already in place and operating within FQ-CoDel. See this post https://forum.netgate.com/post/803139



  • I am not convinced there is anything more than 1 flow on the existing configuration, especially after reading this and taking it all in, be warned its a big lot of text.

    https://www.freebsd.org/cgi/man.cgi?query=ipfw&sektion=8&apropos=0&manpath=FreeBSD+11.2-RELEASE+and+Ports

    But you can skip to the dummynet section.

    I am measuring drops in two ways.

    By looking at the output from the command I pasted on here, (I assumed that was obvious), and also holding a key down in a ssh terminal session whilst downloading bulk data to see if there is visible packet loss. Packet loss is very visible in a ssh terminal session as the cursor will stick and jump.

    With a single flow fq_codel is fine at reducing jitter and latency, and that is all 95% seems to care about on here, just to get their dslreports grade scores up. However I did observe it was not able to differentiate between different tcp streams and as such not intelligently drop packets, the droptail AQM e.g. just blocks new packets entering the queue when its full, regardless of what those packets are.

    Note that for flow separation the dummynet configuration states a mask needs to be set in the queue as well as the scheduler.

    When running ipfw sched show, there is 2 indications of flows.

    One is the number of buckets which stays as 1 on the older configuration, the other is on ipfw queue show and and the number of flows on that which stays at 0.

    I managed to figure out the syntax for ipv6 flow separation as well based on how its configured for ipv4.

    Now I am not saying you are wrong in that there is invisible flows not presented by the status commands, I am just saying I am seeing no evidence of that, based on performance metrics and the tools provided that show the active status of dummynet.

    If you want to see the changes I made they are as following, these commands will generate a flow for each remote ipv4 address on downloads.

    ipfw sched 1 config pipe 1 queue 500 mask src-ip 0xffffff00 type fq_codel ecn target 5 interval 30 quantum 300 limit 1000
    ipfw queue 1 config sched 1 queue 500 mask src-ip 0x000000ff

    You dont have to do this and it is more complex, if all you care about is bufferbloat then the existing single flow configuration is fine. As that's what it does it reduces bufferbloat. But if you want flow seperation, then the dummynet man page seems to clearly state that masks have to be set in scheduler and queue.

    It	is important to	understand the role of the SCHED_MASK and FLOW_MASK,
         which are configured through the commands
    	   ipfw	sched N	config mask SCHED_MASK ...
         and
    	   ipfw	queue X	config mask FLOW_MASK ....
    
         The SCHED_MASK is used to assign flows to one or more scheduler
         instances,	one for	each value of the packet's 5-tuple after applying
         SCHED_MASK.  As an	example, using ``src-ip	0xffffff00'' creates one
         instance for each /24 destination subnet.
    
         The FLOW_MASK, together with the SCHED_MASK, is used to split packets
         into flows.  As an	example, using ``src-ip	0x000000ff'' together with the
         previous SCHED_MASK makes a flow for each individual source address.  In
         turn, flows for each /24 subnet will be sent to the same scheduler
         instance.
    

    Sorry about the colour changes the source text isnt like that. There is mention of schedule instances which may be what you are reffering to, but these dont seem to provide intelligent dropping of packets whilst flow separation does.